1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
/*
* Simple PWM controller
* ADC measurement
*
* Copyright (c) 2018-2020 Michael Buesch <m@bues.ch>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "compat.h"
#include "debug.h"
#include "adc.h"
#include "util.h"
#include "main.h"
#include "pwm.h"
#include "battery.h"
#include "arithmetic.h"
#include "outputsp.h"
#include "standby.h"
#include "remote.h"
#include "watchdog.h"
/* ADC configuration. */
#define ADC_HYST 1u /* ADC hysteresis */
#define ADC_MIN 0u /* Physical ADC minimum */
#define ADC_MAX 0x3FFu /* Physical ADC maximum */
#define ADC_VBG_MV 1100u /* Vbg in millivolts. */
#define NR_ADC NR_PWM
#if IS_ATMEGAx8
# define ADC0_MUX ((0 << MUX3) | (0 << MUX2) | (0 << MUX1) | (0 << MUX0))
# define ADC1_MUX ((0 << MUX3) | (0 << MUX2) | (0 << MUX1) | (1 << MUX0))
# define ADC2_MUX ((0 << MUX3) | (0 << MUX2) | (1 << MUX1) | (0 << MUX0))
#else
# define ADC0_MUX ((0 << MUX3) | (0 << MUX2) | (1 << MUX1) | (0 << MUX0))
# define ADC1_MUX 0
# define ADC2_MUX 0
#endif
#if NR_ADC == 3
# define ADC_DIDR_MASK ((1 << ADC2D) | (1 << ADC1D) | (1 << ADC0D))
#elif NR_ADC == 1
# define ADC_DIDR_MASK (1 << ADC2D)
#else
# error
#endif
/* Sample discard support. */
#define USE_ADC_DISCARD (USE_BAT_MONITOR || (NR_ADC > 1))
/* Analog pin switching support. */
#define USE_APIN_SWITCH USE_REMOTE
static struct {
/* Currently active ADC MUX */
uint8_t index;
/* Battery measurement requested. */
bool battery_meas_requested;
/* Battery measurement running. */
bool battery_meas_running;
/* Is the input idle? */
bool standby_ready[NR_ADC];
/* Number of ADC inputs sucessfully measured. */
uint8_t conv_count;
/* Number of samples to discard. */
uint8_t discard;
/* Previous PWM interrupt count state. */
uint8_t prev_pwm_count;
/* Analog input pin measurement enabled? */
bool analogpins_enabled;
} adc;
static bool adc_hw_enabled(void)
{
return !!(ADCSRA & (1 << ADEN));
}
#define ADC_MUXMODE_NORM 0u
#define ADC_MUXMODE_BAT 1u
/* Configure the ADC multiplexer.
* Interrupts must be disabled before calling this function. */
static inline void adc_configure_mux(uint8_t mux_mode, uint8_t index)
{
uint8_t mux_bits;
if (mux_mode == ADC_MUXMODE_NORM) {
/* Normal input signal measurement mode. */
if (NR_ADC <= 1u || index == 0u)
mux_bits = ADC0_MUX;
else if (index == 1u)
mux_bits = ADC1_MUX;
else
mux_bits = ADC2_MUX;
if (IS_ATMEGAx8) {
/* Ref = Vcc; in = ADC0/1/2; Right adjust */
ADMUX = (0 << REFS1) | (1 << REFS0) |
(0 << ADLAR) | mux_bits;
} else {
/* Ref = Vcc; in = ADC2; Right adjust */
ADMUX = (0 << REFS2) | (0 << REFS1) | (0 << REFS0) |
(0 << ADLAR) | mux_bits;
}
} else { /* mux_mode == ADC_MUXMODE_BAT */
/* Battery voltage measurement mode. */
if (IS_ATMEGAx8) {
/* Ref = Vcc; in = Vbg (1.1V); Right adjust */
ADMUX = (0 << REFS1) | (1 << REFS0) |
(0 << ADLAR) |
(1 << MUX3) | (1 << MUX2) | (1 << MUX1) | (0 << MUX0);
} else {
/* Ref = Vcc; in = Vbg (1.1V); Right adjust */
ADMUX = (0 << REFS2) | (0 << REFS1) | (0 << REFS0) |
(0 << ADLAR) |
(1 << MUX3) | (1 << MUX2) | (0 << MUX1) | (0 << MUX0);
}
}
}
/* Configure the ADC hardware.
* Interrupts must be disabled before calling this function. */
static void adc_configure(bool enable)
{
/* Disable ADC unit. */
ADCSRA = 0;
/* Disable ADC digital input */
DIDR0 = ADC_DIDR_MASK;
/* Trigger source = free running */
ADCSRB = (0 << ADTS2) | (0 << ADTS1) | (0 << ADTS0);
if (enable) {
if (adc_battery_measurement_active()) {
/* Configure the MUX to battery measurement. */
adc.battery_meas_requested = false;
adc.battery_meas_running = true;
adc_configure_mux(ADC_MUXMODE_BAT, 0u);
/* Enable and start ADC; free running; PS = 64; IRQ enabled */
ADCSRA = (1 << ADEN) | (1 << ADSC) | (1 << ADATE) |
(1 << ADIF) | (1 << ADIE) |
(1 << ADPS2) | (1 << ADPS1) | (0 << ADPS0);
/* Discard the first few results to compensate
* for Vbg settling time (1 ms). */
adc.discard = 10;
} else if (battery_voltage_is_critical()) {
/* Battery voltage is critical and no battery measurement
* has been requested.
* Keep the ADC shut down. */
} else if (!adc_analogpins_enabled()) {
/* Analog input pins are disabled.
* Keep the ADC shut down. */
} else {
/* Measure input pins. */
/* Configure the MUX to the active input ADC. */
adc_configure_mux(ADC_MUXMODE_NORM, adc.index);
/* Enable and start ADC; free running; PS = 64; IRQ enabled */
ADCSRA = (1 << ADEN) | (1 << ADSC) | (1 << ADATE) |
(1 << ADIF) | (1 << ADIE) |
(1 << ADPS2) | (1 << ADPS1) | (0 << ADPS0);
if (NR_ADC > 1)
adc.discard = 1;
}
}
}
/* Returns true, if a battery measurement conversion is currently active. */
bool adc_battery_measurement_active(void)
{
if (USE_BAT_MONITOR)
return adc.battery_meas_requested || adc.battery_meas_running;
return false;
}
/* Request a measurement of the battery voltage.
* Interrupts must be disabled before calling this function. */
void adc_request_battery_measurement(void)
{
if (USE_BAT_MONITOR) {
adc.battery_meas_requested = true;
if (adc_hw_enabled()) {
/* The ADC will be reconfigured by the completion
* interrupt of the currently running conversion. */
} else {
/* No conversion currently running. Reconfigure ADC now. */
adc_configure(true);
}
}
}
/* Get the analogpin measurement state. */
bool adc_analogpins_enabled(void)
{
if (USE_APIN_SWITCH)
return adc.analogpins_enabled;
return true;
}
/* Enable/disable the analog input pin measurement. */
void adc_analogpins_enable(bool enable)
{
uint8_t irq_state;
if (USE_APIN_SWITCH) {
irq_state = irq_disable_save();
if (adc.analogpins_enabled != enable) {
adc.analogpins_enabled = enable;
if (enable && !adc_hw_enabled())
adc_configure(true);
set_standby_suppress(STANDBY_SRC_ADC, enable);
}
irq_restore(irq_state);
}
}
/* Handle wake up from deep sleep.
* Called with interrupts disabled. */
void adc_handle_deep_sleep_wakeup(void)
{
if (!adc_analogpins_enabled())
set_standby_suppress(STANDBY_SRC_ADC, false);
}
/* ADC conversion complete interrupt service routine */
ISR(ADC_vect)
{
uint16_t raw_adc;
uint16_t raw_setpoint;
uint16_t filt_setpoint;
uint16_t vcc_mv;
uint8_t pwm_count;
uint8_t index;
uint8_t i;
bool pwm_collision;
bool allow_standby;
bool go_standby;
memory_barrier();
/* Check if we had a PWM interrupt during our ADC measurement.
* This only checks for collisions with the low frequency IRQ mode PWM.
* Do this check with interrupts still disabled. */
pwm_count = pwm_get_irq_count();
pwm_collision = (pwm_count != adc.prev_pwm_count);
adc.prev_pwm_count = pwm_count;
/* Disable the ADC interrupt and
* globally enable interrupts.
* This allows TIM0_OVF_vect to interrupt us. */
ADCSRA &= (uint8_t)~(1u << ADIE);
irq_enable();
/* Read the analog input */
raw_adc = ADC;
if (!USE_ADC_DISCARD || adc.discard == 0) {
if (USE_BAT_MONITOR && adc.battery_meas_running) {
/* Battery voltage measurement mode. */
/* Convert the raw ADC value to millivolts. */
if (raw_adc > 0u) {
vcc_mv = lim_u16((((uint32_t)ADC_MAX + 1u) * (uint32_t)ADC_VBG_MV) /
(uint32_t)raw_adc);
} else
vcc_mv = UINT16_MAX;
/* Report the measured battery voltage to the
* battery voltage logic. */
evaluate_battery_voltage(vcc_mv);
/* Disable interrupts for
* - PWM shut down
* - ADC re-init */
irq_disable();
if (battery_voltage_is_critical()) {
/* Turn the output off immediately.
* This also reconfigures the
* battery measurement interval. */
for (i = 0u; i < NR_PWM; i++)
output_setpoint_set(IF_MULTIPWM(i,) false, 0u);
}
/* We're done.
* Turn off battery measurement mode and
* return to normal ADC operation mode
* (if battery voltage is not critical). */
adc.battery_meas_running = false;
adc_configure(true);
} else {
if (pwm_collision) {
/* An IRQ controlled PWM output actuation happened
* during the measurement.
* Discard this measurement. */
irq_disable();
allow_standby = false;
} else {
/* Normal operation mode. */
if (CONF_ADCINVERT)
raw_adc = ADC_MAX - raw_adc;
index = (NR_ADC > 1u) ? adc.index : 0u;
output_setpoint_transform(IF_MULTIPWM(index,)
CONF_ADCHSL,
raw_adc,
&raw_setpoint,
&filt_setpoint);
/* This channel is ready for standby, if idle. */
if (USE_DEEP_SLEEP) {
adc.standby_ready[index] = (raw_setpoint == 0u);
adc.conv_count = add_sat_u8(adc.conv_count, 1u);
}
/* Globally disable interrupts.
* TIM0_OVF_vect must not interrupt re-programming of the PWM below. */
irq_disable();
/* Change the output signal (PWM). */
if (adc_analogpins_enabled()) {
output_setpoint_set(IF_MULTIPWM(index,)
CONF_ADCHSL,
filt_setpoint);
}
/* Increment index to the next ADC. */
if (NR_ADC > 1u) {
if (++adc.index >= NR_ADC)
adc.index = 0u;
/* Switch MUX to the next ADC. */
adc_configure_mux(ADC_MUXMODE_NORM, adc.index);
adc.discard = 1;
}
allow_standby = true;
}
if (USE_BAT_MONITOR && adc.battery_meas_requested) {
/* Battery measurement requested.
* Reconfigure the ADC for battery measurement. */
adc_configure(true);
} else if (!adc_analogpins_enabled()) {
adc_configure(false);
set_standby_suppress(STANDBY_SRC_ADC, false);
} else {
/* If the PWM is disabled, request deep sleep to save power. */
if (USE_DEEP_SLEEP && adc.conv_count >= NR_ADC) {
adc.conv_count = 0u;
go_standby = allow_standby;
for (i = 0u; i < NR_ADC; i++)
go_standby &= adc.standby_ready[i];
set_standby_suppress(STANDBY_SRC_ADC, !go_standby);
}
}
}
} else {
/* Discard this sample. */
adc.discard--;
irq_disable();
}
/* If there is no watchdog IRQ,
* then the ADC IRQ is responsible for poking the watchdog. */
if (!USE_WATCHDOG_IRQ)
wdt_reset();
/* Re-enable the ADC interrupt. */
ADCSRA |= (1u << ADIE);
ADCSRA |= (1u << ADIF);
memory_barrier();
}
/* Initialize the input ADC measurement.
* Interrupts must be disabled before calling this function. */
void adc_init(bool enable)
{
adc.prev_pwm_count = pwm_get_irq_count();
memory_barrier();
adc_configure(enable);
}
|