1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
# -*- coding: utf-8 -*-
#
# AWL data types helper functions
#
# Copyright 2013-2019 Michael Buesch <m@bues.ch>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
from __future__ import division, absolute_import, print_function, unicode_literals
#from awlsim.common.cython_support cimport * #@cy
from awlsim.common.compat import *
from awlsim.common.util import *
from awlsim.common.exceptions import *
import struct #@nocy
__all__ = [
"swapEndianWord",
"swapEndianDWord",
"byteToSignedPyInt",
"wordToSignedPyInt",
"dwordToSignedPyInt",
"qwordToSignedPyInt",
"pyFloatToDWord",
"dwordToPyFloat",
"floatConst",
"isNaN",
"isInf",
"isPosNegZero",
"isDenormalPyFloat",
"pyFloatEqual",
"floatEqual",
"roundUp",
"intDivRoundUp",
"getMSB",
"isInteger",
"isString",
"len_u32",
"len_u16",
"len_u8",
"len_s32",
"len_s16",
"len_s8",
"u32_to_s32",
"u32_to_s16",
"u32_to_s8",
"s32_to_u32",
"s32_to_u16",
"s32_to_u8",
]
__floatStruct = struct.Struct(str('>f')) #@nocy
__wordStruct = struct.Struct(str('>H')) #@nocy
__leWordStruct = struct.Struct(str('<H')) #@nocy
__dwordStruct = struct.Struct(str('>I')) #@nocy
__leDWordStruct = struct.Struct(str('<I')) #@nocy
# Swap the endianness of an S7 word.
# The Cython variant of this function is defined in .pxd.in
def swapEndianWord(word, #@nocy
__be=__wordStruct, #@nocy
__le=__leWordStruct): #@nocy
return __le.unpack(__be.pack(word))[0] #@nocy
# Swap the endianness of an S7 dword.
# The Cython variant of this function is defined in .pxd.in
def swapEndianDWord(dword, #@nocy
__be=__dwordStruct, #@nocy
__le=__leDWordStruct): #@nocy
return __le.unpack(__be.pack(dword))[0] #@nocy
# Convert a S7 byte to a signed Python int.
# This applies the two's complement, if the byte is negative
# so that the resulting Python int will have the correct sign.
# The Cython variant of this function is defined in .pxd.in
def byteToSignedPyInt(byte): #@nocy
if byte & 0x80: #@nocy
return -((~byte + 1) & 0xFF) #@nocy
return byte & 0xFF #@nocy
# Convert a S7 word to a signed Python int.
# This applies the two's complement, if the word is negative
# so that the resulting Python int will have the correct sign.
# The Cython variant of this function is defined in .pxd.in
def wordToSignedPyInt(word): #@nocy
if word & 0x8000: #@nocy
return -((~word + 1) & 0xFFFF) #@nocy
return word & 0xFFFF #@nocy
# Convert a S7 dword to a signed Python int.
# This applies the two's complement, if the dword is negative
# so that the resulting Python int will have the correct sign.
# The Cython variant of this function is defined in .pxd.in
def dwordToSignedPyInt(dword): #@nocy
if dword & 0x80000000: #@nocy
return -((~dword + 1) & 0xFFFFFFFF) #@nocy
return dword & 0xFFFFFFFF #@nocy
# Convert a quad-word (64 bit) to a signed Python int.
# This applies the two's complement, if the qword is negative
# so that the resulting Python int will have the correct sign.
# The Cython variant of this function is defined in .pxd.in
def qwordToSignedPyInt(qword): #@nocy
if qword & 0x8000000000000000: #@nocy
return -((~qword + 1) & 0xFFFFFFFFFFFFFFFF) #@nocy
return qword & 0xFFFFFFFFFFFFFFFF #@nocy
# Convert a Python float to an S7 dword.
def pyFloatToDWord(pyfl, #@nocy
__f=__floatStruct, #@nocy
__d=__dwordStruct): #@nocy
#cdef uint32_t pyFloatToDWord(double pyfl): #@cy
# cdef _floatCastUnion u #@cy
# cdef uint32_t dword #@cy
try: #@nocy
dword = __d.unpack(__f.pack(pyfl))[0] #@nocy
except OverflowError: #@nocy
if pyfl < 0.0: #@nocy
dword = floatConst.minNormNegFloat32DWord #@nocy
else: #@nocy
dword = floatConst.maxNormPosFloat32DWord #@nocy
# u.fvalue = <float>pyfl; #@cy
# dword = u.value32 #@cy
if isDenormalPyFloat(pyfl):
# Denormal floats are equal to zero on the S7 CPU.
# OV and OS flags are set in the StatusWord handler.
dword = 0x00000000
elif (dword & 0x7FFFFFFF) > 0x7F800000:
# NaNs are always all-ones on the S7 CPU.
dword = 0xFFFFFFFF
return dword
# Convert an S7 dword to a Python float.
# The Cython variant of this function is defined in .pxd.in
def dwordToPyFloat(dword, #@nocy
__f=__floatStruct, #@nocy
__d=__dwordStruct): #@nocy
return __f.unpack(__d.pack(dword))[0] #@nocy
class FloatConst(object): #+cdef
__slots__ = (
"minNormPosFloat32DWord",
"minNormPosFloat32",
"minNormNegFloat32DWord",
"minNormNegFloat32",
"maxNormNegFloat32DWord",
"maxNormNegFloat32",
"maxNormPosFloat32DWord",
"maxNormPosFloat32",
"posInfDWord",
"posInfFloat",
"negInfDWord",
"negInfFloat",
"pNaNDWord",
"nNaNDWord",
"nNaNFloat",
"negZeroDWord",
"epsilonFloat",
)
def __init__(self):
# The smallest normalized positive 32-bit float.
self.minNormPosFloat32DWord = 0x00000001
self.minNormPosFloat32 = dwordToPyFloat(self.minNormPosFloat32DWord)
# The smallest normalized negative 32-bit float.
self.minNormNegFloat32DWord = 0xFF7FFFFF
self.minNormNegFloat32 = dwordToPyFloat(self.minNormNegFloat32DWord)
# The biggest normalized negative 32-bit float.
self.maxNormNegFloat32DWord = 0x80000001
self.maxNormNegFloat32 = dwordToPyFloat(self.maxNormNegFloat32DWord)
# The biggest normalized positive 32-bit float.
self.maxNormPosFloat32DWord = 0x7F7FFFFF
self.maxNormPosFloat32 = dwordToPyFloat(self.maxNormPosFloat32DWord)
# Positive infinity
self.posInfDWord = 0x7F800000
self.posInfFloat = dwordToPyFloat(self.posInfDWord)
# Negative infinity
self.negInfDWord = 0xFF800000
self.negInfFloat = dwordToPyFloat(self.negInfDWord)
# Positive NaN
self.pNaNDWord = 0x7FFFFFFF
# Negative NaN
self.nNaNDWord = 0xFFFFFFFF
self.nNaNFloat = dwordToPyFloat(self.nNaNDWord)
# Negative zero
self.negZeroDWord = 0x80000000
# Compare threshold
self.epsilonFloat = 0.0000001
floatConst = FloatConst() #+cdef-FloatConst
# Check if dword is positive or negative NaN
# The Cython variant of this function is defined in .pxd.in
def isNaN(dword): #@nocy
return (dword & 0x7FFFFFFF) > 0x7F800000 #@nocy
# Check if dword is positive or negative infinity.
# The Cython variant of this function is defined in .pxd.in
def isInf(dword): #@nocy
return (dword & 0x7FFFFFFF) == 0x7F800000 #@nocy
# Check if dword is positive or negative zero in IEEE float encoding.
# The Cython variant of this function is defined in .pxd.in
def isPosNegZero(dword): #@nocy
return (dword & 0x7FFFFFFF) == 0 #@nocy
# Check if a Python float is in the denormalized range.
# The Cython variant of this function is defined in .pxd.in
def isDenormalPyFloat(pyfl, #@nocy
__min=floatConst.minNormPosFloat32, #@nocy
__max=floatConst.maxNormNegFloat32): #@nocy
return ((pyfl > 0.0 and pyfl < __min) or #@nocy
(pyfl < 0.0 and pyfl > __max)) #@nocy
# Check if two Python floats are equal.
def pyFloatEqual(pyfl0, pyfl1): #@nocy
return abs(pyfl0 - pyfl1) < floatConst.epsilonFloat #@nocy
# Check if two Python floats or S7 dword are equal.
def floatEqual(fl0, fl1): #@nocy
#cdef _Bool floatEqual(object fl0, object fl1): #@cy
if not isinstance(fl0, float):
fl0 = dwordToPyFloat(fl0)
if not isinstance(fl1, float):
fl1 = dwordToPyFloat(fl1)
return pyFloatEqual(fl0, fl1)
# Round up integer 'n' to a multiple of integer 's'
# The Cython variant of this function is defined in .pxd.in
def roundUp(n, s): #@nocy
return ((n + s - 1) // s) * s #@nocy
# Divide integer 'n' by 'd' and round up to the next integer
# The Cython variant of this function is defined in .pxd.in
def intDivRoundUp(n, d): #@nocy
return (n + d - 1) // d #@nocy
# Get the most significant bit set in a 32 bit integer
# and return an integer with only that bit set.
# If the value is bigger than 0xFFFFFFFF the behavior is undefined.
def getMSB(value): #@nocy
#cdef uint32_t getMSB(uint32_t value): #@cy
value |= value >> 1
value |= value >> 2
value |= value >> 4
value |= value >> 8
value |= value >> 16
return value ^ (value >> 1)
def __isInteger_python2(value): #@nocy #@nocov
return isinstance(value, (int, long)) #@nocy
def __isInteger_python3(value): #@nocy #@nocov
return isinstance(value, int) #@nocy
isInteger = py23(__isInteger_python2, #@nocy
__isInteger_python3) #@nocy
def __isString_python2(value): #@nocy #@nocov
return isinstance(value, (unicode, str)) #@nocy
def __isString_python3(value): #@nocy #@nocov
return isinstance(value, str) #@nocy
isString = py23(__isString_python2, #@nocy
__isString_python3) #@nocy
# Get the len() of obj and restrict to uint32_t.
# The Cython variant of this function is defined in .pxd.in
def len_u32(obj): #@nocy
return min(len(obj), 0xFFFFFFFF) #@nocy
# Get the len() of obj and restrict to uint16_t.
# The Cython variant of this function is defined in .pxd.in
def len_u16(obj): #@nocy
return min(len(obj), 0xFFFF) #@nocy
# Get the len() of obj and restrict to uint8_t.
# The Cython variant of this function is defined in .pxd.in
def len_u8(obj): #@nocy
return min(len(obj), 0xFF) #@nocy
# Get the len() of obj and restrict to int32_t.
# The Cython variant of this function is defined in .pxd.in
def len_s32(obj): #@nocy
return min(len(obj), 0x7FFFFFFF) #@nocy
# Get the len() of obj and restrict to int16_t.
# The Cython variant of this function is defined in .pxd.in
def len_s16(obj): #@nocy
return min(len(obj), 0x7FFF) #@nocy
# Get the len() of obj and restrict to int8_t.
# The Cython variant of this function is defined in .pxd.in
def len_s8(obj): #@nocy
return min(len(obj), 0x7F) #@nocy
# Restrict an uint32_t to int32_t range.
# The Cython variant of this function is defined in .pxd.in
def u32_to_s32(value): #@nocy
return min(value, 0x7FFFFFFF) #@nocy
# Restrict an uint32_t to int16_t range.
# The Cython variant of this function is defined in .pxd.in
def u32_to_s16(value): #@nocy
return min(value, 0x7FFF) #@nocy
# Restrict an uint32_t to int8_t range.
# The Cython variant of this function is defined in .pxd.in
def u32_to_s8(value): #@nocy
return min(value, 0x7F) #@nocy
# Restrict an int32_t to uint32_t range.
# The Cython variant of this function is defined in .pxd.in
def s32_to_u32(value): #@nocy
return min(max(value, 0), 0x7FFFFFFF) #@nocy
# Restrict an int32_t to uint16_t range.
# The Cython variant of this function is defined in .pxd.in
def s32_to_u16(value): #@nocy
return min(max(value, 0), 0xFFFF) #@nocy
# Restrict an int32_t to uint8_t range.
# The Cython variant of this function is defined in .pxd.in
def s32_to_u8(value): #@nocy
return min(max(value, 0), 0xFF) #@nocy
|